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Abstract—Two different nonlinear fracture mechanics models are proposed for analysis of the
constitutive flexural behavior of brittle-matrix composites with localized or distributed continuous
ductile reinforcements. The models analyze the potential crises for brittle crack propagation and
reinforcement yielding or debonding and can be fitted into the general framework of the bridged-
crack model. A rigid-plastic bridging law is assumed. Local discontinuous phenomena, as well as a
ductile to brittle transition in the constitutive relationship, when a characteristic dimension of the
body decreases, are predicted. A comparison between the continuous and discontinuous for-
mulations shows that, in the limit case of a sufficiently high number of localized reinforcements, the
theoretical models converge to the same global results. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

Crack growth in a brittle-matrix composite material is a discontinuous phenomenon,
characterized by sudden initiations and arrests of propagation, caused by the bridging
action of the secondary phases, as well as by the rise and coalescence of microcracks in the
process or bridging zone. Often this local phenomenon, which is evident at a microscale
level, does not translate into global discontinuous effects and the macrostructural behavior
of the composite members proves globally continuous. Nevertheless, in brittle-matrix com-
posite materials with high strength and high bond-resistance fibers, or in composites with
a limited number of localized reinforcements, some discontinuous effects may emerge even
at the macroscale level.

Local discontinuities, which are an indication of snap-back or snap-through insta-
bilities for deflection-control and load-control, respectively, have been noticed in the exper-
imental flexural response of different kinds of composites. The load-deflection diagram
shown in Figure 1(a) refers to a four-point bending test on a cement beam reinforced with
two localized layers of glass-fiber bundles (span x depth x thickness = 90 x 9 x 20 mm) (Zhu
and Bartos, 1993). The diagram reveals snap-back instabilities, or loading jumps at constant
displacement, caused by a catastrophic crack propagation arrested by the bridging action
of the reinforcements. In the load-deflection diagram of Figure 1(b), resulting from a three-
point bending test on a high-resistance reinforced concrete, a local snap-through instability
clearly highlights the bridging action of the steel bar (span xdepth x thickness =
1200 x 200 x 150 mm) (Bosco et al., 1990). Finally, in Figure 1(c) a load vs deflection curve
resulting from a four-point bending test on a SiC whisker-reinforced alumina is shown
(span x depth x thickness = 41 x 2.5 x 2.5 mm) (Jenkins ez al., 1987). The curve presents a
typical saw-tooth appearance which is the macrostructural result of the local discontinuous
phenomena linked to successive crack propagation and arrest.
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Fig. 1. Discontinuous flexural responses in various composites, after Zhu and Bartos (1993), Bosco
et al. (1990) and Jenkins er al. (1987).

With the aim of analyzing the constitutive flexural response of different kinds of
composite materials and of reproducing nonlinear phenomena, such as the ones previously
discussed, two nonlinear fracture mechanics applications are proposed. Both the appli-
cations examine the evolutive process of crack propagation in a composite cross-section
under monotonic bending and can be fitted into the general framework of the bridged-
crack model.

The bridged-crack model is a nonlinear fracture mechanics model which simulates the
bridging zone and the bridging mechanisms of the material through a fictitious crack and
a continuous or discontinuous distribution of closing tractions, directly applied onto the
crack faces. It assumes a singular stress field in the crack tip vicinity, and the crack
propagates as soon as the crack tip stress intensity factor reaches the matrix toughness.
Different versions of this model have been formulated for the analysis of composites with
uniformly distributed reinforcements (Marshall er al., 1985; Jenq and Shah, 1985 ; Foote
et al., 1986; Budiansky er al., 1986; Jenq and Shah, 1986; Rose, 1987; Swanson et al.,
1987; Erdogan and Joseph, 1989 ; Cox and Marshall, 1991; Kendall ez al., 1991; Cox,
1991 ; Ballarini and Muju, 1993 : Cox and Marshall, 1994). Moreover, bridged-crack models
have been proposed for the analysis of the overall behavior of brittle-matrix composites
with localized reinforcements, such as bars, wires, and riveted or bonded stiffeners (Romu-
aldi and Batson, 1963 ; Carpinteri, 1984 ; Desayi and Ganesan, 1986 ; Bosco and Carpinteri,
1992a, b; Carpinteri and Massabd, 1994 ; Bosco and Carpinteri, 1995).

The discontinuous model proposed in this paper, replaces the secondary-phase bridging
action by means of concentrated forces directly applied onto the crack faces. In this way
either localized reinforcements, such as bars, bundles of fibers or wires, can be represented
in a global macrostructural analysis of a composite member in bending, or microstructural
modeling of a generic fiber-reinforced composite can be developed. The analysis derives
from a model, originally proposed by Carpinteri (1984), for the study of the fracturing
process in reinforced concrete beams. On the other hand, in the continuous model described
in this paper, the secondary-phase restraining of crack propagation is represented by a
continuous closing traction distribution acting along the crack faces. The secondary-phase
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bridging action is therefore rendered homogeneous and the model can be consistently
applied to analyze the failure process in brittle-matrix composites with uniformly distributed
reinforcements.

The analytical formulations of the model are shown and the theoretical results are
discussed and compared. The effects of the local damage process on the macrostructural
behavior are investigated in the case of a bridging mechanism characterized by a rigid-
plastic bridging law, linking the closing traction to the crack opening displacement. The
structural behavior proves to be controlled by one dimensionless parameter, which depends
on the beam depth, the matrix toughness, the fiber ultimate strength and the fiber volume
ratio.

2. MODEL ASSUMPTIONS AND DIMENSIONAL ANALYSIS

The proposed theoretical models explain and reproduce the monotonic constitutive
flexural response of multiphase materials. Brittle-matrix composites reinforced with con-
tinuous ductile elements, e.g. bars, wires, or fibers with a high aspect-ratio, are considered.

The models refer to the schemes shown in Figs 2(a) and 3, representing the cracked
cross section of a composite beam in bending. The depth and thickness of the cross section
are h and b, respectively, and the crack length is a. The normalized crack depth & = a/h
and the normalized coordinate { = x/h are defined, x being the generic coordinate related
to the bottom of the cross section.

The continuous and discontinuous closing traction distributions, directly applied onto
the crack faces in the theoretical schemes, represent the physical bridging mechanisms of
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Fig. 2. (a) Schematic of the discontinuous-model ;. (b) and (c) crack profiles for elastic and yielded
reinforcements.
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the reinforcing phases. In the discontinuous model (Fig. 2(a)) the indeterminate closing
forces P, (i=1,...,m), replace the bridging actions of a discrete number of localized
reinforcements. The coordinate of the ith reinforcement from the bottom of the beam is ¢;,
and the normalized value is {; = ¢;/A. In the continuous model (Fig. 3), the closing tractions
g, represent the bridging action of a continuous distribution of secondary reinforcing
phases.

A linear-elastic constitutive law together with a linear elastic fracture mechanics
(LEFM) crack propagation condition is assumed for the matrix. The crack starts pro-
pagating when the global crack tip stress intensity factor K;, which is a measure of the
singular stress field in the crack tip vicinity, reaches the matrix toughness Kj. Reference is
made to the two-dimensional single-edge notched-strip solutions (Tada et al., 1985) to
define the fracture mechanics parameters.

The stress-strain constitutive law of the reinforcements is assumed elastic-perfectly
plastic. Moreover a rigid-plastic bond-slip law is defined on account of local debonding
between the matrix and the reinforcement. This law is a simplified model which is physically
realistic for small slips. The last two assumptions imply a rigid-perfectly plastic bridging
relationship, linking the closing tractions to the crack face openings, for the description of
the secondary-phase restraining of crack propagation. In particular, in the discontinuous
model the bridging relationship P(w,) relates the bridging force P; to the crack opening
displacement w; at the ith fiber level, and in the continuous model the bridging relationship
oo(w) relates the bridging tractions o, to the crack opening displacement w(x), at the generic
coordinate x. The maximum bridging traction is defined, in the discontinuous and in the
continuous model, respectively, by the ultimate force P, = 4,0,, and by the ultimate stress
ayp = po,, A; being the single reinforcement area, p the secondary-phase volume ratio and
o, the minimum between the reinforcement stresses at the yielding and sliding limit. Low
reinforcement volume ratios are considered so that only the matrix properties control the
composite elastic behavior. The composite orthotropy could be introduced in an approxi-
mate way through the evaluation of an orthotropic Young’s modulus (Cox and Marshall,
1991).

The potential collapse mechanisms, due to brittle crack propagation and to yielding
or sliding of the reinforcements are examined. The cross-sectional mechanical response,
through the constitutive flexural relationship linking the bending moment M to the localized
rotation ¢, is then evaluated by means of the above elementary events. The potential crises
are controlled by two parameters with different physical dimensions, the ultimate stress o,
[FI[L]~? and the critical stress intensity factor K,c [F][L]"*. These different dimensions
make the structural behavior dependent on the beam size.

Dimensional analysis allows us to define the dimensionless parameters which syn-
thetically control the kind of response and final collapse of the cross section (Buckingham,
1915). In accordance with the model assumptions, the functional relationship M vs ¢ may
be put into the following general form :

F (M, ¢, Kic, E,po,.h;r) =0 (1)

in which all the pertinent variables involved in the physical problem are considered. E is
the matrix Young’s modulus, and #; are the dimensionless ratios describing the geometry
of the member, e.g. the normalized thickness b/A, the normalized initial crack length ay/h
and, in the discontinuous model, the normalized reinforcement coordinates ¢,/4 and the
single reinforcement percentage p, = A,/bh. The Poisson ratio is considered as negligible.

If we fix the geometrical ratios and assume the localized reinforcements of the dis-
continuous model as having constant area (p;, = p/n, n = total number of reinforcements),
the choice of the dimensionally independent quantities K, and 4 as fundamental set, leads
to the dimensionless physical equation:

M po,vh(].i Eh().S
1l »

chhz‘s 9¢’ Kl(‘ H ch ) =f(M.¢,Np,E) = 0 (2)

in which M, E and N, represent, respectively, the dimensionless values of the applied
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moment, of Young’s modulus and of the reinforcement ultimate strength. The theoretical
formulation will show that the parameter £ is a simply constant divisor of the localized
rotations, (see eqns (12) and (19)), so that eqn (2) becomes :

f(M.$,Np) =0 3)
G h°3
Ne =% )

in which the dimensionless variable N, controlling the brittleness of the cross section, has been
called brittleness number (Carpinteri, 1981 and 1984). Equation (3) states that the structural
responses are physically similar if the dimensionless number N, remains unchanged, and
therefore physical non-similarity is predicted when the size-scale of the body varies.

It is worth noting that the physical eqn (3) holds only within the range of validity of
the model assumptions. We assumed a perfectly plastic law to describe the reinforcement
bridging mechanism. On the other hand, if the bridging tractions vanish for crack opening
displacements greater than a critical value w,, a new governing parameter W, = w./h is
expected to be involved in the functional relationship (2). According to the theoretical
analysis proposed by Carpinteri and Massabé (1995), the final equation can be given the
form:

fM, ¢, N, Ext) = 0. (5)

The cross-sectional global response turns out to be governed by two dimensionless
parameters, namely, N, and the product between the dimensionless Young’s modulus and
the normalized critical crack opening displacement, £, = (Ew.)/(Kch*®). The parameter
Ew, affects the length of the bridged crack, which can vary during the loading process
because of the failure of the reinforcements. In the same way, two dimensionless parameters
control the behavior of materials characterized by different bridging laws, e.g. brittle-matrix
composites reinforced with short fibers or particles.

3. THE DISCONTINUOUS MODEL

Let us consider the cracked composite beam in bending shown in Fig. 2(a). The
theoretical model reproduces a loading process, which is controlled by the monotonically
increasing crack depth a, when the successive cross-sectional configurations that satisfy
equilibrium and compatibility are evaluated. These solutions are found through the appli-
cation of m proper kinematic conditions, related to the crack opening displacement w; at
the different fiber levels, which make it possible to evaluate the unknown reactions P; and
therefore to solve the statically indeterminate problem. The analytical formulation has been
proposed by Bosco and Carpinteri (1995). The fundamental passages are briefly recalled
as they constitute the theoretical framework upon which the continuous model of the next
section is based. Moreover a direct comparison between the analytical equations of the two
models can explain their differences and peculiarities.

The crack opening displacement w; at the ith level can be defined through the super-
position principle and the localized compliances due to the crack:

m
W, =Wyt 3w, = Ay M—
o~

/

Y AP (6)
=1

]

where w;,, and w;; are the crack opsning displacements produced by the bending moment
M and by the generic reactions P, respectively; 4, and 4; are the localized compliances
due to the crack, representing, respectively, the crack opening displacement due to a unit
bending moment M = 1 and to unit opening forces P, = 1 acting at {,. The minus sign in
the equation is due to the assumed opposite positive direction of P; and w,. In order to
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evaluate the localized compliances, we consider an energy balance according to the for-
mulation briefly recalled in Appendix A.

The kinematic conditions may be deduced from the physical action exerted by the
reinforcements that bridge the crack, keeping it closed at their levels during the elastic
phase and controlling its opening after yielding or slippage (Fig. 2(b, c)). Hence, a com-
patible solution sets the crack opening displacements w,, i = 1,...,m, equal to zero until
yielding or slippage of at least one of the m reinforcements is reached (Fig. 2(b)). Using a
matrix formulation, this condition takes on the form:

{w} = {Au}M—1A1{P} = {0} ™
where {w} = {w,...,w,}T is the vector whose components are the crack opening dis-
placements at the different fiber levels, {P} = {P,,..., P, }" is the vector of the unknown

fiber bridging reactions, {4,} and [1] are respectively the vector {4, ..., A}  of the
localized compliances related to the moment M and the symmetrical m x m matrix, whose
generic element ij represents the localized compliance 4. Resolution of the system leads to
the unknown vector { P} as a function of the applied moment:

{Pih
M

= [4] Wuf ®

If the generic ith reinforcement yields or slips, the crack opens at the coordinate ¢;,
and w; becomes an unknown quantity. The number of equations in system (7) reduces, as
well as the degree of redundancy, P, being equal to the previously defined maximum bridging
force Pp; (Fig. 2(c)). Also at the subsequent plastic deformations of the reinforcements, the
number of the unknown quantities is again equal to the number of equations. By means of
eqn (8) or the similar relationships for one or more reinforcements already yielded, the
dimensionless plastic moment M ,/(Pph), for which the generic ith reinforcement reaches
the yielding limit, can be evaluated. This depends on the crack length and the fiber positions
only.

The moment of crack-propagation, M, corresponding to the crack in a state of mobile
equilibrium, is evaluated through the superposition principle and the mobile equilibrium
condition :

n

=Ky — Z Ky = K¢ )

in which K| is the global crack tip stress intensity factor. and Kj,, and K;, are the stress
intensity factors due to the applied bending moment and to the generic opening forces P,
respectively (see Appendix B). The dimensionless form of the crack-propagation moment

is given by

M, 1 (Ny» P
- B WS AN 10)
Kl(hl Sb YM(é){ P 1'; p PPI i : ) } (

in which N, is the dimensionless number given in eqn (4). Relation (10) can be worked out
by observing that the ratio P,/Pp; is equal to the ratio M/ M., M, being the previously
evaluated plastic moment. Therefore, the applied moment for which a crack, whose length
1s fixed, reaches the onset of propagation, can be evaluated for the different conditions of the
m reinforcements crossing the crack (yielded or unyielded). The cross-sectional resistance
moment will be the minimum among these values.

The localized rotation due to the crack is a function of both the applied bending
moment and the bridging reactions through the localized compliances:
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m m

¢’ = ¢1w+ Z 4)/ = ApmM— Z toaiPi = Jpgg M — ’{)~,M}T{P} (11)
i=1

i=1

in which ¢,, and ¢, are the localized rotations due to M and to P, respectively, and A,
and 4,,, are given by eqns (A1) and (A9). The dimensionless form of the localized rotation
for the crack at the onset of propagation is

& Np n P’ <
= Yu(&)ydé—— Y Yp(&,()d 12
Ehl).j KIC}Z]'SbJ M(C) i p Z j M(é) (‘; ) é} ( )

Pi
0 i=1 PP: ]

where K¢/(ER®®) is the reciprocal of the dimensionless Young’s modulus £.

Note that the particular dimensionless form of eqns (10) and (12) results from the
dimensional analysis proposed in the previous section. Apart from a multiplicative constant
quantity due to the geometrical ratio /A, the left-hand side of eqn (10) represents, in fact,
the dimensionless moment M of the functional relationship (3). The dimensionless ultimate
stress of the reinforcements appears in the equations through the dimensionless number
Np, and the dimensionless Young’s modulus E is present in eqn (12) as a divisory constant
of the localized rotations. Equations (10) and (12) make it possible to verify that, if the
beam geometrical ratios are fixed and the single reinforcements have the same percentage
area, the cross-sectional flexural response is controlled by the dimensionless number N,
alone.

4. CROSS SECTION WITH TWO REINFORCEMENTS

The previously proposed theoretical formulation can be readily illustrated in the simple
case of a beam with two layers of reinforcement, and this example brings out the essential
nonlinear phenomena affecting the post-cracking behavior of any brittle-matrix composite
member. Consider the composite beam shown in Fig. 2(a), in which only two equal
reinforcements are placed at the normalized coordinates {, = ¢,/h = 0.1 and {, = ¢,/h = 0.2.

In the diagram of Fig. 4, the dimensionless crack-propagation moment M /(Kch'’b)
vs the normalized crack depth ¢ relationship, is depicted. The thick curve represents the
cross-sectional resistant moment when the reinforcements are still elastic, while the thin
curves refer to one or both of the reinforcements when they have already yielded or slid, as
varying the brittleness number N,. The dots in the figure indicate the reinforcement yielding
points.

Me
sl I I il

-2 Me<M> WO FIBERS
— M:>M,

1.0
. Mg < Mp ONE - FIBER

0.8

0.6

0.4

0.2

0.0 i | 1 1 1 T RN SO B | { 1

0.0 ¢y=0.1¢,=0.2 0. 04 05 06 07 08 5=_;'1’_

Fig. 4. Dimensionless crack-propagation moment vs normalized crack depth diagram for a com-
posite cross section with one or two localized reinforcements.
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Fig. 5. Dimensionless moment vs localized rotation diagrams for a beam with two reinforcements,
as the brittleness number N, varies.

The diagram makes it possible to follow the evolutive process of crack propagation
along the beam depth and is subdivided into three zones. Zone I, for 0 < & < {,, concerns
cracks in the plain matrix of the cross section cover, whose strain-softening response is
controlled by the matrix toughness K- only and is represented by the curve for N, =0,
i.e., p = 0. This curve characterizes the flexural response of a perfectly brittle material,
which is stable only if a fast and uncontrollable crack propagation is avoided by a pro-
gressive decrease of the applied moment. Zone Il, for {, < & < {,, concerns crack depths
between the reinforcements, and Zone 111, for ¢ > {,, cracks which have passed the inner-
most reinforcement. In these zones the reinforcements increase the toughness of the cross
section, and the global response becomes more stable when the fiber percentage, and thus
the brittleness number N, increases from zero (N, = 0) to a greater value (N, > 0). At the
boundaries between the three zones, for crack depths equal to the fiber coordinates, the
theoretical model predicts local discontinuities, with positive jumps of the resistance
moment: when a propagating crack reaches a reinforcement it is arrested, and the new
advancement takes place in response to an increment of the applied moment.

The dimensionless moment versus localized rotation relationships have been evaluated
for three different sections, with brittleness numbers N, of 0.3, 0.6 and 0.9, respectively,
and with a normalized initial crack depth &, = a,/h = 0.12. The curves are shown in Fig. 5,
where the localized rotation in the abscissa is multiplied by the dimensionless parameter E.
The diagrams refer to the initial part of the constitutive curves. The horizontal dashed lines
represent the dimensionless ultimate moment for totally disconnected sections. These are
asymptotes for the theoretical curves and, with the assumption of yielded reinforcements
(P, = P, = P;) at final collapse, are given by

Mu §l+‘:2>
——— =N, 1 — . 13)
KIChI'Sb P( 2 (

A ductile-brittle transition clearly emerges in the diagrams of Fig. 5 when the brittleness
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number N, decreases. The first cross section, with N, = 0.3, shows a global strain-softening
response, whereas the last cross section, with N, = 0.9, shows a global strain-hardening
response. These results suggest that beams of different depth, but made with the same
composite material, can show different structural responses (see eqn (4)). Moreover, the
responses of different beams, with different heights, but with the same kind of matrix and
reinforcements, can be similar if the product of the reinforcement percentage and the square
root of the height is kept constant.

The theoretical results have been confirmed by several experimental tests carried out
on different kinds of composite materials. The ductile-brittle transition has, for example,
been reproduced by experimental tests on high-strength reinforced concrete by Bosco er al.
(1990). Local discontinuities in some experimental flexural relationships have been shown
in Fig. 1.

In order to trace the damage process occurring in the composite sections, consider the
moment-vs-rotation curve of the beam with N, = 0.9, shown in Fig. 5(c). The cross-
sectional response is linear-elastic up to point 4. In Fig. 4 this branch would be represented
by a vertical path for ¢ = &,. An unstable crack propagation starts in 4 and goes on until
in B the crack approaches the inner reinforcement and stops. The reinforcement bridging
action increases the toughness of the cross section, and the applied moment value enabling
a new crack propagation is suddenly increased. The new system condition is represented
by point C, which is characterized by the same crack depth of point B (see Fig. 4). Note
that the branch BC is linear. After reaching point C, the crack continues propagating in an
unstable way until the local minimum D. Subsequently the cracking process is stable,
and the applied moment must be progressively increased in order to produce the crack
advancement. After point E, a marked reduction in stiffness and plastic deformations
control the strain-hardening branch toward the asymptotic ultimate moment M,. In F the
inner reinforcement yielding is reached. The dotted lines C—C’ and C—C” in Fig. 5(c),
define a snap-back and a snap-through instability, respectively. The snap-back instability,
or a jump at constant rotation, would be experimentally or theoretically obtained in a
displacement-controlled process, while the snap-through instability, or a jump at constant
load, would be obtained in a load-controlled process.

The number of reinforcements has been assumed fixed in the previous application,
although it can affect the structural response of the composite section in bending. Consider
a beam with a single layer of reinforcement, and assume the reinforcement coordinate equal
to ¢ = 0.15A, so that its lever arm with respect to the extrados equalizes that of the previously
analyzed beam.

The nondimensional moment vs crack depth relationship is depicted in Fig. 4 through
the dotted thick line (for elastic reinforcement) and through the thin lines (for yielded
reinforcement). Note that the relationships for the two beams coincide after yielding of the
reinforcements (thin lines).

In Fig. 6 the comparison between the moment-rotation curves, corresponding to the
first beam (thin lines) and the second beam (thick lines), is shown. Two different brittleness
numbers, N, = 0.3 and N, = 0.6, have been considered and an initial crack has been

’\I/IF ho-5 MF ho-5
_F_ poy — poy
) Np= —+—— =03 3 Np=—2— =0.6
Kich'b Kic Kich'®b P= ke
0.6 0.6
=== ONE FIBER
0.4 —— TWO FIBERS |g 4
— ONE FIBER
0.2 0.2 -—— TWO FIBERS
0.0 Q.0 .
0.0 20 40 6.0 8.0 o Kic 0.0 20 40 6.0 80 o/ Kic
(a) HO5E (b) HO5E

reinforcements.

Fig. 6. Comparison between the constitutive flexural responses of two beams with one or two
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assumed of depth a, = 0.17A. The different reinforcement distribution strongly affects the
structural performance of the beam in the initial cracking phase, as the crack-propagation
moment of the beam with two reinforcements proves greater than the corresponding
moment of the beam with a single reinforcement (thick curve in Fig. 4). On the other hand,
the reinforcement distribution does not modify the ultimate loads, which are controlled by
the reinforcement lever arms and by the brittleness number through eqn (13), as well as the
responses for very deep cracks (thin curves in Fig. 4). The curves relating to the beam with
two reinforcements show a decrement of the system compliance and a less marked pop-in
behavior.

The kinematic condition (7) provides an explanation for these results. In the beam
with two reinforcements, the crack is kept closed in two points along the depth (w; = 0,
i =1,2), because of the reinforcement bridging action, up to reinforcement yielding or
debonding. In this way the maximum amplitude of the eyelet, which describes the crack
face shape, does not reach the amplitude developed in the singly-reinforced beam, given
equal crack depth.

The above-mentioned considerations are fundamental in structural components whose
cracking process and durability must be controlled. The same conclusions may be drawn
when the number of the reinforcements is increased, and therefore the post-cracking struc-
tural behavior improves if the reinforcements are smeared in the cross section (provided
the lever arm of the resultant bridging force and the brittleness number of the cross
section N, are kept unchanged). These theoretical results have been widely confirmed by
experimental tests. Among others we may refer to the tests carried out by Nervi (1951), in
which the above-mentioned phenomena were observed in the flexural response of cemen-
titious members reinforced with smeared steel wires.

5. CONTINUOUS MODEL

The continuous model has been formulated for the macrostructural analysis of multi-
phase composites, consisting of brittle matrices and continuously distributed secondary
phases. The model derives from the discontinuous model with the assumption of rendering
homogeneous the secondary-phase bridging action (Fig. 3).

As in the previously proposed discontinuous model, a loading process, controlled by
the crack advancement, is theoretically simulated in order to predict the constitutive flexural
behavior of the cross section. The analytic formulation has been developed by Carpinteri
and Massabd (1995), for a generic bridging relationship oq(w), to describe different sec-
ondary phases. This requires the resolution of a nonlinear integral problem which involves
the verification of both kinematic compatibility and static equilibrium. Nevertheless, when
the bridging relationship can be described by a rigid-plastic law, as for the continuous
ductile reinforcements of the composite material under consideration, the problem can be
simply solved by checking the equilibrium conditions.

Consider the cracked beam in bending shown in Fig. 3. The total crack of depth a is
given by the addition of two portions, the real or traction-free crack of depth a,, along
which the crack faces have no interaction, and the bridged crack of depth (¢—a,), acted
upon by the bridging tractions a,(w).

A singular stress field is assumed in the crack tip vicinity and the total crack tip stress
intensity factor K, is defined, through the superposition principle, as the sum of the stress
intensity factors Ky, eqn (B1), and K|, respectively, due to the bending moment M and to
the closing tractions g,. The factor K|, is obtained by integrating along the bridged crack
the product between the stress intensity factor due to opposite opening forces P, = 1 applied
at the generic coordinate {; (eqn (B3)) and the bridging tractions g,, thus:

< K(EC ) ; 1 < ) . . ,
K, = J A"(;?'—ﬂao(w(c,))bhds, :77,[ 00 (W(0) Y (&, ObR L. (14)
: h03p

ir A r

The crack propagates when K, equalizes the matrix toughness K|
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¢

M 1
YM — 0 YP 5 bhd =KIC‘ 15
Ly YO o La(w(:)) (& O)bhdl (15)

Relationships (4) and (15) yield the dimensionless moment of crack propagation

My 1 “ao(w(())
= p| — Yol : 1
Kook YM(é){N j oo Yp(¢ C)dC-H} (16)

ér ¥y

At the onset of propagation, the bridging tractions g,(w) have reached the ultimate value
po,, and therefore eqn (16) simplifies as follows

Mg 1 <
= 4 . 1
chhl'sb YM(é){NPJ" YP(C’C)dC“’l} . (17)

ér

The localized rotation ¢ of the cracked cross section takes the form:

¢ = dut+ P, = A ()M — J A (S, L)oo (w(C )b d; (18)

r

where ¢,, and ¢, are the rotations due to the applied bending moment and to the closing
tractions, respectively, and A, and 4,, are the localized compliances due to the crack,
given by eqns (A11) and (A9). By substituting eqn (17) into eqn (18), the localized rotation
at the onset of crack propagation turns out to be

2K { M, (¢ £/ (e
= %! '—INp D) Yp(y, 1dd > 19
¢ Eho,s{chhl,sbL Yi(y)dy—N “J YuDYoly C)dy> c} (19)

In Fig. 7 the theoretical curves relating the dimensionless crack-propagation moment
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Fig. 7. Dimensionless crack-propagation moment vs normalized crack depth diagram for a com-
posite cross section with uniformly distributed ductile reinforcements.
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Fig. 8. Dimensionless moment vs localized rotation diagrams for a continuously reinforced beam
as the brittleness number N, varies.

M /(K,ch'b) to the normalized crack depth ¢ are shown for a beam whose reinforcements
are smeared in the whole cross section, as the brittleness number N, varies. According to
LEFM, the crack-propagation moment tends to be infinite when the crack depth vanishes.
The circles in the figure indicate the minimum of each curve, which represents a transition
in the evolutive process of crack propagation. For crack depths lower than that cor-
responding to the minimum, the response is unstable and an uncontrollable crack propa-
gation can be avoided only by progressively decreasing the applied load. On the other hand,
for crack depths greater then the limit value, the process is stable, and a slow crack growth
is made possible only by increasing the applied load. The limit crack depth increases when
the brittleness number decreases, and for N, lower than 0.1, the crack propagation process
is always unstable.

The corresponding moment versus localized rotation diagram is shown in Fig. 8. The
theoretical curves have been obtained by assuming an initial matrix crack of depth a, = 0.14,
bridged by unbroken reinforcements (&, = 0). The curves tend asymptotically to the ulti-
mate dimensionless moment for totally disconnected sections

M, (=87 N,
Kch'b T2 2

(20)

Some constitutive curves, for N, = 0.1, 0.5, 1.1 and 3.0 are drawn again in the small
diagrams given alongside. A ductile to brittle transition emerges as N decreases, i.e. as the
beam depth or the fiber volume ratio decreases, or the matrix toughness increases. This
behavior has been experimentally verified in fiber reinforced concrete beams by Gopa-
laratnam et al. (1995).

The curves with Np = 1.1 and N, = 0.5 show a hyper-strength phenomenon, the
maximum load bearable by the beams being greater than the ultimate load at the total
disconnection. In fact, for low brittleness numbers the matrix toughness, which controls the
first post-cracking response, prevails over the toughening mechanism due to the secondary
phases, which instead controls the response for deep cracks. This phenomen has been
experimentally noticed in the flexural response of reinforced concrete beams by Bosco et
al. (1990) and by Levi e al. (1988), and it is usually detected in the flexural response of
fiber-reinforced cementitious materials (Jenq and Shah, 1986).

Local snap-through instabilities can be observed in the theoretical curves characterized
by intermediate values of N,, which tend to disappear when the brittleness number increases
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as the toughening mechanism of the secondary phases starts to prevail over the toughening
mechanism of the brittle matrix. At the limit, for a very high N, number, the flexural
response could be consistently reproduced by means of a theoretical model disregarding
the matrix toughness (K~ = 0).

The depth of the assumed initial crack affects the mechanical responses. The thin lines
in the small diagrams of Fig. 8, for N, = 0.5 and N, = 1.1, represent the linear elastic
behavior of beams whose initial crack has been assumed equal to the limit value defined by
the circle in Fig. 7, a; ~ 0.7h and a, ~ 0.334 for N, = 0.5 and N, = 1.1, respectively. The
post-cracking responses of these two cases are defined by the same curves previously
obtained for an initial crack depth of 0.1/, and therefore the beam with N, = 0.5 shows an
elastic-plastic behavior, while the beam with N, = 1.1 presents a strain-hardening response.

The above results emerge from the assumption of a perfectly plastic bridging relation-
ship. On the other hand, different responses would be predicted if the rigid-plastic bridging
tractions o,(w) vanished for a critical value of the crack opening displacement w.. The
constitutive flexural response of this material would be depicted by eqns (16) and (19).
which continue to be applicable, provided the length of the fully bridged crack (—¢&,),
along which the integrals are evaluated, corresponds to the equilibrated and compatible
solution.

Without entering into the details of this new problem, which has been studied by
Carpinteri and Massabo (1995), it is interesting to report for completeness some
conclusions. Figure 8 has pointed out the existence of a size-scale effect, represented by a
brittle-ductile transition in the constitutive flexural response, as the beam characteristic
dimension / increases, while the mechanical properties are kept unchanged. On the other
hand, if the traction-free crack propagates during the loading process, the structural com-
ponent can verify a size-scale effect characteristic of the strain-softening material, which is
opposite to the preceding one and represented by a ductile-brittle transition.

6. CONTINUOUS VS DISCONTINUOUS STRUCTURAL RESPONSES

The constitutive response of composites with a limited number of localized reinforce-
ments, or the influence of the single reinforcements on the crack extension can be inves-
tigated by means of the proposed discontinuous model. On the other hand, the continuous
model can be consistently applied to make macrostructural studies of multiphase nonlinear
materials. Nevertheless, if the number of the individual reinforcements in the member is
high enough, the discontinuous and the continuous model converge to the same global
results.

In order to make a comparison between the theoretical results, a beam reinforced with
ten continuous fibers, equally distributed in the part of the cross section between 0.1/4 and
0.55h, has been considered. The beam is initially notched and 4, = 0.14. Three different
situations, for brittleness numbers N, 0of 0.1, 0.4 and 0.7, respectively, have been considered.

The structural behavior has been studied using the previously proposed discontinuous
(Bosco and Carpinteri, 1991) and continuous models. In order to apply the continuous
model, a uniform equivalent distribution of reinforcements has been applied along the
crack faces in place of the localized fibers. The two schemes are shown in Fig. 9(a). In the
same figure, the theoretical diagrams relating the dimensionless crack-propagation moment
M/(K,ch'b) to the normalized rotation ¢/¢, are depicted. The localized rotation ¢ has
been normalized with respect to the rotation ¢, at the propagation of the initial crack. The
thick lines and the thin lines represent the flexural responses predicted by the discontinuous
model and the continuous model, respectively. The horizontal dashed lines define the
ultimate moment of the cross section.

A substantial agreement is noticeable in the global responses. Both the models predict
the already observed brittle to ductile transition for increasing Np.

The thick curves, resulting from the discontinuous model, show a discontinuous initial
branch, presenting the characteristic saw-tooth appearance which reveals local instabilities.
This part of the curve describes the cross-sectional behavior during crack advancement
until the last fiber position ¢,, = 0.554 is reached. The repeated crack initiation and arrest,
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Fig. 9. Comparison between the discontinuous and the continuous theoretical results : (a) theoretical
schemes ; (b), (c) and (d) dimensionless moment vs localized rotation diagrams.

due to the bridging action of the individual fibers, give rise to this pattern. The saw-tooth
maxima are the points at which the crack growth initiates, while the saw-tooth minima are
the points of crack arrest. This kind of discontinuous response is very evident in brittle
matrices reinforced with high-strength and high-bond resistance continuous or dis-
continuous fibers (see Fig. 1). Often the same phenomenon appears in the response of other
kinds of composite materials, but usually it is less pronounced owing to the matrix nonlinear
behavior and to the sliding and pull-out mechanisms of the reinforcements that smooth the
saw-tooth peaks (Bosco et al., 1990).

The thin curves, resulting from the continuous model, define a continuous response
which averages the discontinuous one. The localized rotations predicted by the two models
are the same as demonstrated by the snap-back in the thin curves, appearing as soon as
the crack penetrates the unbridged matrix, the position of which coincides with the last
discontinuity of the thick discontinuous curve.

The results of this section can be explained by comparing eqns (10) and (12) with eqns
(17) and (19), of the discontinuous and the continuous model, respectively. The integrals
in eqns (17) and (19), in place of the summations in eqns (10) and (12), are explained by
the assumed homogenization of the localized fibers. Moreover, the discontinuous model
assumes that the fibers crossing the crack can be still elastic when the crack is about to
propagate, (P, < P, or 0, < 0,) and it evaluates the bridging reactions through the kine-
matic condition (7) according to which the crack remains closed until the plastic defor-
mation of the reinforcement is reached. This assumption does not prevent the crack face
opening between the single fibers and therefore the growth of localized rotations (Fig.
2(b)). On the other hand, the continuous model assumes that the bridging tractions have
already reached the yielding limit at the onset of crack propagation, without making any
distinction between the potential collapse of crack propagation and reinforcement yielding,
which occur at the same time.

The comparison in Fig. 9 shows that the increase in the fiber number, and therefore
the reduction in the fiber spacing, tends to produce a real monophase behavior. In these
terms the structural response could be modelled not only by a continuous bridged-crack
model, but also by a cohesive-crack model, according to which the toughening mechanism
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of both the matrix and the secondary elements are combined and a single cohesive relation-
ship a4(w) for the whole composite is defined (Carpinteri and Massabd, 1995).

It is worth specifying that when the reinforcement number is low, e.g. the two fibers
of the example in Fig. 5, the application of the continuous model, by smearing the bridging
tractions over a zone surrounding the position of the reinforcements, would lead to totally
erroneous results in the loading phase preceding the yielding of the reinforcements. This is
due to the continuous model assumption of yielded reinforcements at the onset of crack
propagation.

7. CONCLUSIONS

Two nonlinear fracture mechanics models have been proposed for the analysis of the
failure process in brittle-matrix composite materials, which consider the two competing
potential crises of brittle crack propagation and reinforcement yielding or debonding. The
discontinuous model is a bridged-crack model for the analysis of composite beams in bending
with a limited number of localized reinforcements. The same model can be applied to
microscale analysis of brittle matrix composites with continuously distributed secondary
phases when the localized action of the single reinforcements on the discontinuous crack-
propagation process is of interest. The model reproduces local discontinuities in the moment
vs rotation constitutive response caused by the reinforcement bridging action. The con-
tinuous model has been derived from the discontinuous model with the assumption of
rendering homogeneous the secondary-phase action. It can be consistently applied to
macrostructural analysis of multiphase materials with a continuous distribution of
reinforcements.

The mechanical behavior proves to be governed by one or two dimensionless par-
ameters according to the assumed bridging law, which describes the secondary-phase
resistance against crack opening and propagation. For a rigid-perfectly plastic law, rep-
resentative of the bridging mechanism of long ductile fibers, the single parameter is the
dimensionless number N, = pg 4°%/K,c. For a rigid-plastic law limited by a critical value
of the crack opening displacement, a second dimensionless parameter Ew = Ew,/
(K ch*®) may affect the structural response. Physical similitude in the structural responses
1s predicted if the dimensionless parameters are kept unchanged.

For a composite material whose bridging mechanism may be represented by a perfectly
plastic law, both the proposed models predict a ductile-brittle transition in the failure when
the brittleness number N, decreases. This means that a size-scale effect is predicted in the
composite constitutive response according to which it modifies from strain-softening to
strain-hardening when the beam depth increases. Nevertheless, this trend may undergo
modification, if a critical crack opening displacement exists beyond which the bridging
tractions vanish.

In a composite with a sufficiently high number of localized reinforcements, the two
theoretical models converge to the same global results. The continuous model, albeit
without reproducing the local discontinuities and the characteristic saw-tooth behavior in
the constitutive flexural response of the cross section, nevertheless defines an average
behavior. At the limit, the increase in the fiber number, and therefore the reduction in the
fiber spacing, tends to produce in the composite material a real monophasic behavior and
this could be modeled as homogeneous.
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APPENDIX A
Consider the linear-elastic specimen shown in Fig. A1, which is subjected to n generalized concentrated forces
P,i=1,..., n. The element of thickness & has a through-thickness crack of depth a. The generic load-point

displacement 6,; is given by the sum of the displacement J,, of the uncracked specimen plus the localized
displacement &, due to the crack. The localized displacement §; is defined by the following equation :

3, =Y /P, (A1)
i=1

in which 4, are the localized compliances, namely the load-point displacement J; due to the unit load P, = 1.
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Fig. Al. Theoretical scheme for the evaluation of the localized compliances.

If the crack propagates by da the new specimen configuration will be characterized by new values of the loads
and of the localized displacements, P,+dP;and é,+dd,(i = 1, ..., n). Thelocalized compliances will be incremented
by di,. The variation of the total potential energy of the system consequent to the crack advancement is
dW = dU—dL, dU and dL being the variations of the elastic strain energy and the potential of the applied loads,
respectively. Applying Clapeyron’s theorem, we obtain

=y

dW:if{Pdcw ~5,dP,— Pdo} (A2)

The meanings of the different terms on the right-hand side can be readily deduced from the load vs displacement
diagram of Fig. Al(b) for the problem of a single applied load P. By expressing the increment of the localized
displacement dd; as a function of the localized compliances

n

do, = z i APy + Py ddy) (A3)

and substituting eqn (A3) into egn (A2), we obtain

|<M:

Z PP di,. (A4)

The total potential energy W, the crack driving force % and the global crack tip stress intensity factor K; are
connected by the relation

K+ +K,) bd (K, Ku)

E

-3 3 (A5)

i=1j=1

dW = —%bda = —

in which K] is the sum of the stress intensity factors produced by all the applied loads. Integration of eqns (A4)
and (AS5) leads to two different expressions of the potential energy W:

W= —r%da= =5 ZJ k) b da (A6)
0 ! 1]

=1j=1

_—iz S PP, (A7)

/l/l

from which it is possible to define the generic localized compliances 4,;:

. 2 [“ KKy,
J— / A8
Ay L bda. (A8)

According to Betti’s theorem, 4, = 4.
For the beam in bending in Fig. 2(a) the localized compliances 4y, 4,; and Z,,, in eqns (6) and (11) can be
obtained by substituting the stress intensity factors of eqns (B1) and (B3)
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2 <
Airg = EJ:/ Yp(. 0D Y (&) dE (A9)
\ 2 (¢
Ay =y =17 Yp(&, ) Yp(&, () (A10)
bE max[{d]
. 2,
A-MMz—_‘f Yy (8)dé. (AIT)
Eh*b Jo

Both the integrals in eqns (A9) and (A10) are improper since the integrand has a singularity in the interval of
integration. The singularity in eqn (A9) is apparent and removable, while the one in eqn (A10), for i = j, is not
removable and the integral diverges. To overcome this problem we can recall the initial assumption of the
theoretical model concerning the substitution of the single reinforcement bridging action by means of two
concentrated forces, so disregarding the transverse reinforcement dimension which is different from zero and
known. If 4 is the diameter of the reinforcement and d = d/h the normalized value, the ith fiber action on the
crack could be represented by a closing traction distribution p, = P,/bd acting between ¢,—d/2 and ¢, +dj2.

With this assumption, the local compliance 4,,, representing the crack opening displacement at the fiber level
¢; due to a unit traction distribution p, = 1, can be defined by means of the following equation :

X 2 1 [¢ (minlvi,+d2) B .
Wéﬁﬂ j Yp(3n ) ALY n(y,0) dy. (A12)

{—d2)

The improper integral in the foregoing equation converges as the singularity can be removed. To represent in any

case the fiber action by means of two concentrated forces, the local compliances in eqn (A10), for / = j, can be
evaluated through

. 2 (¢ Cen s

i :ELLYp(c,sA)'dc (A13)
T h

where #/h is a proper normalized cut-off distance, calculated so that the local compliances 4;, eqn (A10), and 4;,,

eqn (A12), have the same numerical value (1/# = 107%).

APPENDIX B
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